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ANNEX 8. CRITERIA CURRENTLY USED FOR DELIMITING INTERMEDIATE LFAS 
Since the setting up of the scheme in 1975, the Community legislation has fixed three typologies of 
indicators for identifying intermediate LFAs1: a) the presence of land of poor productivity; b) an 
economic performance in agriculture appreciably lower than the average; c) a low or dwindling population. 

a) Land productivity criteria 

These criteria can be broadly classified into three categories: "physical indicators", "farm structure indicators" 
and "index systems".  

Table 1: Land Productivity Criteria 

Indicator used Member States that apply the indicator 

A) "Physical indicators" 

1 Altitude 2 (BE, AT) 

2 Number of days without frost 1 (BE) 

3 Unfavourable drainage 1 (LU) 

B) "Farm structure indicators" 

4 Comparative arable yield against national average 7 (BE, EL, ES, FR, IT, LT, SK) 

5 % of grassland in the UAA 4 (BE, FI, SK, UK) 

6 Proportion of forage in the UAA 3 (FR, LU, SE) 

7 % of rough grazing in the UAA 2 (EL, IT) 

8 % of arable land in the UAA 1 (ES) 

9 Livestock density 1(LU) 

10 % of irrigated land in arable areas 1 (ES) 

11 % of land fallow in arable areas 1 (ES) 

12 Ploughed area  1 (IE) 

13 % of UAA with serious handicap  1 (PT) 

C) "Index methodologies" 

14 Poor soil/climate productivity index (4 different methodologies) 4 (HU, LV, SK, SE) 

15 Agricultural comparability index – BZ 1 (AT) 

16 Agricultural comparability index – LVZ  1 (DE) 

                                                 
1  See Article 3.4 of Directive 75/268/EEC, Article 24 of Regulation (EC) No 950/97 and Article 19 of Regulation 

(EC) No 1782/99.  
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17 Bonitate system index 1 (EE) 

18 Land index system - BPEJ 1 (CZ) 

19 Index of Nikula  1 (FI) 

20 Land quality index - LQI 1 (PL) 

21 Land suitability map index 1 (CY) 

22 Productivity index 'L. Turc' 1 (ES) 

23 Soil quality index 1 (SI) 

The first category includes few physical indicators related to soil and climate conditions, e.g. altitude, number of 
days without frost, unfavorable drainage. In most cases, these types of indicators are embedded into index 
systems, as explained further.  

Not less than 12 Member States used "farm structure indicators" as proxies of land productivity. Only two 
indicators - arable yield and percentage of grassland – were used by more than three Member States. Each 
Member State has in fact chosen the indicators it deemed more appropriate for its own situation.  

In 2005, a Council working group discussed a non-paper suggesting that a number of proxies to reflect poor soil 
qualities and unfavorable climatic conditions (e.g. average cereals yield, % of permanent grassland, stocking 
density, etc.) would be able to be a basis of a possible Community wide system for classifying intermediate 
LFAs. However, an agreement on this basis could not be found, as the application of the indicators presented 
might have led in many cases to inappropriate results. 

A third category of criteria designating intermediate LFAs can be defined as 'index systems'. These are 
methodologies based on several indicators (e.g. existing land/soil classification systems). An index is then 
calculated and used for classifying the areas according to specific thresholds or classes. In some cases, such 
methodologies use only physical indicators. More frequently, index systems are based on both physical and farm 
structure indicators and often a mix of physical, farm structure, infrastructure (e.g. distance from market place, 
energy and water supply) and economic performance indicators is used. It should be noted that in several cases 
the index systems do not only have the purpose of designating intermediate LFAs, but are also used for a number 
of administrative applications, e.g. for tax purposes.  There are, in a number of cases, similarities between the 
index systems used in different Member States (e.g. Germany and Poland). However it is difficult to compare 
these systems against each other, since even when they are based on the same type of information, different 
weighting methods or classifications are then used to calculate the index. 

 

b) Economic performance criteria 

 

Several indicators are used for identifying an economic performance in agriculture appreciably lower than the 
national average. Table 3 groups these indicators under 14 categories, including the index systems with 
economic indicators embedded, applied in four Member States (AT, DE, FI, SE). The level of income per 
labour unit compared to the national average is the most common economic indicator, utilized in five Member 
States (BE, CY, FR, EL, IE). The level of the income tax paid and the gross production compared to the 
national average are both taken up by two Member States (EE and LV and HU and LT respectively). The 
remaining indicators are peculiar to individual Member States and are quite diverse, from the agricultural 
income of the administrative area to the total farm income related to the livestock density. 
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Table 2: Economic performance criteria 

Indicator used Number of Member States that apply the 
indicator 

1 Income per labour unit not exceeding % of National average amount  5 

2 Index systems with economic indicators embedded 4 

3 Amount of Income tax paid not exceeding threshold of National average level  2 

4 Gross production not exceeding % of National average 2 

5 Livestock gross margin compared to National average 1 

6 Farm rents compared to the National average 1 

7 Land tax not above % of national average 1 

8 Whole farm income compared to National average 1 

9 Cost of production 1 

10 Total farm incomes lower than National average as related to livestock density 1 

11 Income tax paid not exceeding threshold 1 

12 Net value added at factor cost per Ag worker not exceeding % of European 
Community average  

1 

13 Standard Gross Margin of worker of worker does not exceed % of National 
average 

1 

14 Agricultural income of Administrative Area not above a threshold 1 

Similarly to farm structure indicators, poor economic performance cannot be considered in itself as an indicator 
of natural handicaps, since other drivers, such as input availability, training and capacity to adapt to rapidly 
evolving market conditions, can significantly affect economic results. However, the association of physical 
indicators and of farm structure and/or economic performance criteria, might be useful to assess if a natural 
handicap is actually affecting agriculture in a specific area, namely in those cases where soil or climate 
handicaps can be overcome through investments of specific farming practices.  

   c) Population criteria 

Table 3: Population criteria 

Indicator used Number of Member States that apply the indicator  

1 Population density limits per Km² 25 

2 Working population engaged in agriculture 18 

3 Annual depopulation rate exceeds 10 
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4 Annual Ag works depopulation exceeds 2 

 

 All the Member States  applied the population density for designating intermediate LFAs, as provided 
for in Article 19 of Regulation 1257/99. The density ceilings applied range from 15 inhabitants/km² in 
Estonia to 130 inhabitants/km² in Germany. The percentage of working population engaged in 
agriculture is also widely used; here again the limit value used as a threshold for designating a 
disadvantaged area varies from 15% in BE, DE, FR, IT and LU  to 50% in EL. These disparities 
result, at least partially, from the particular situation of each Member State but are also mentioned by 
the Court of Auditors as a possible source of unequal treatment. It should be underlined that the 
evolution of such data has not been taken into account when updating the delimitation, despite the 
significant changes occurring in population trends since 1975.Moreover in the context of the new legal 
framework set up by Regulation 1698/2005, where tackling rural depopulation has disappeared from 
the objectives of the LFA scheme and the intermediate LFAs are characterized by natural handicaps, 
population criteria are no longer relevant for designating eligible areas. 
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ANNEX 9. FARMS RECEIVING AN LFA PAYMENT IN 2005 

Table 5. Farms receiving an LFA payment in 2005
Member State Total number of 

farms in MS
Total number of 
farms receiving 
an LFA payment

number of farms as a % of 
total farms

as a % of 
total LFA 

beneficiaries

Belgium 51.519 3.987 3.987 8% 100%
Bulgaria [534610] 0 0
Czech Republic 42.250 9.077 3.943 9% 43%
Denmark 48.270 647 647 1% 100%
Germany 395.076 136.511 121.085 31% 89%
Estonia 27.750 8.888 7.618 27% 86%
Ireland 132.670 98.903 98.903 75% 100%
Greece 833.590 104.161 31.567 4% 30%
Spain 1.079.420 116.902 67.183 6% 57%
France 567.140 103.600 43.039 8% 42%
Italy 2.594.825 99.951 20.351 1% 20%
Cyprus 45.170 12.916 8.720 19% 68%
Latvia 128.670 63.295 63.295 49% 100%
Lithuania 226.651 101.400 100.000 44% 99%
Luxembourg 2.450 1.539 1.539 63% 100%
Hungary 714.790 5.137 3.509 0% 68%
Malta 11.070 6.679 0 0% 0%
Netherlands 81.830 4.449 0 0% 0%
Austria 149.466 104.400 10.805 7% 10%
Poland 2.733.364 116.552 87.713 3% 75%
Portugal 323.920 122.792 20.160 6% 16%
Romania [4256150] 0 0
Slovenia 77.170 52.218 3.066 4% 6%
Slovak Republic 13.531 3.595 1.040 8% 29%
Finland 69.517 65.584 13.734 20% 21%
Sweden 84.410 20.261 12.013 14% 59%
United Kingdom 188.032 48.128 48.128 26% 100%
EU25 10.622.551 1.411.572 772.045 7% 55%

Source: Member States Communications following LFA expert meeting of 14.11.2007. 
For Member States who did not report any data directly, CAP-IDIM data were used

Farms receiving an LFA payment in 
intermediate LFAs
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ANNEX 10. MAPS PAYMENTS SPS/LFA  
Average payments per parish in Scotland in 2005 

a) for Single Farm Payment 

b) for Less Favoured Areas support 
Source, data from Scottish Executive Environment and Rural Affairs Department, 2005 – received as 

contribution to the public consultation). 
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ANNEX 11A. TABLE OF COMMON BIOPHYSICAL CRITERIA AND ASSOCIATED THRESHOLDS  
COMMON BIOPHYSICAL CRITERIA IDENTIFIED BY THE SCIENTIFIC EXPERTS 

Criterion Definition Threshold value 

1. Low 
Temperature 

Length of Growing period (number of 
days) defined by number of days with 
daily average temperature > 5°C 
(LGPt5) OR 

180 days  

 Temperature sum (degree-days) for 
Growing Period defined by 
accumulated daily average temperature 
> 5°C 

1500 degree-days 

2. Heat Stress Number and length of continuous 
periods (number of days) within the 
growing period for which daily 
maximum temperature (Tmax) exceeds 
the threshold 

One or more periods of at least 10 consecutive days with 
daily Tmax > 35°C 

3. Drainage Areas which are water logged and/or 
flooded for significant duration of the 
year (lack of gaseous oxygen in soil for 
root growth or land not accessible for 
tillage). 

Poorly drained as defined by Soil Survey Division Staff - 
1993 OR wet soil within 80 cm for over 6 months 

4. Texture and 
Stoniness 

Relative abundance of clay, silt, sand, 
organic matter (weight %) and coarse 
material (volumetric %) fractions in top 
soil material. 

Soils classified as: unsorted or medium sand, coarse loamy 
sand or organic OR 15% of topsoil volume is coarse 
material OR Heavy clay (>60% clay) or Vertisol, clay, silty 
clay or sandy clay with vertic properties. 

5. Rooting 
depth 

Depth (cm) from soil surface to 
coherent hard rock or hard pan 

30 cm 

– Salinity : 4 deci-siemens per meter (dS/m) 

– Sodicity: 6 Exchangeable Sodium Percentage (ESP)  

6. Chemical 
properties 

Presence of salts, exchangeable sodium 
and gypsum in the topsoil 

– Gypsum: 15% 
7. Soil 
Moisture 
balance 

Number of days within growing period 
as defined by temperature > 5°C 
(LGPt5), for which the amount of 
precipitation and water available in the 
soil profile exceeds half of potential 
evapotranspiration 

90 days 

8. Slope Change of elevation with respect to 
planimetric distance (%) 

15% 
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ANNEX 11B. COMMON BIOPHYSICAL CRITERIA TO DEFINE NATURAL CONSTRAINTS FOR 
AGRICULTURE IN EUROPE (JRC STUDY) 

 

Common bio-physical criteria to define natural 
constraints for agriculture in Europe 

Task1: Definition and scientific justification for the common criteria 

Editors: Jos Van Orshoven, Jean-Michel Terres, Åse Eliasson 

Contributors: Robert Jones, Christine Le-Bas, Freddy Nachtergaele, David Rossiter, Jos Van 

Orshoven, Harrij van Velthuizen 
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This work is part of the Administrative Arrangement (n°AGRI-2008-0181) (JRC ref. n°30969-2008-05 
NFP ISP) between DG Agriculture and Rural Development (DG AGRI) and the Joint Research Centre 
(JRC), Institute for Environment and Sustainability. The purpose of this Administrative Arrangement 
is to provide support for the “Assessment of criteria for the identification of Less Favoured Areas” 
through 6 inter-linked task packages. 

This report relates to Task 1: Provide a clear definition and scientific justification for the common 
criteria”; it presents potential common bio-physical soil and climate criteria that were identified by a 
group of experts to define natural constraints for agriculture in Europe. 

The report is based on several pieces of scientific information: 

• The review by a panel of soil, climate and land evaluation experts of land evaluation methods in 
order to elaborate an approach that could support the delineation of the “intermediate less Favoured 
Areas” for agriculture in EU27. 
• The working expert meeting held on 7th Dec 2007 by the Joint Research Centre in Ispra, Italy 
including the panel of experts contributing to this report, 4 representatives of DG Agriculture and 
Rural Development and 5 experts from the Joint Research Centre. 
• Findings of the expert meeting that was organised by the Joint Research Centre and occurred on the 
19th and 20th of April 2007 in Ispra, Italy. The meeting included 33 participants, including 14 experts 
from various scientific institutes, four participants from DG Agriculture and Rural Development and 
15 experts from the DG Joint Research Centre. 
• Findings of the expert meeting held in May 2006 on land quality assessment, which was organised 
to anticipate the technical work from the Joint Research Centre for DG Agriculture and Rural 
Development in the new definition of the Intermediate Less Favoured Areas. 

This report includes: background information to the Less Favoured Areas (objectives of the project and 
context); an abstract / executive summary; an introduction; a problem statement; materials and 
methods; results; conclusions; references. 

For each criterion proposed by the panel of experts, the agronomic rationale, the definition, the 
scientific background, the assessment, the values for severe / very severe thresholds, the conclusions 
and some references are provided as fact sheets in the annexes. 

This scientific information is aimed to be a base for DG Agriculture and Rural Development in their 
consultation with Member States and future proposal for identifying the Intermediate Less Favoured 
Areas from biophysical criteria, seen as natural handicaps to agriculture. 
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Abstract / Executive summary 

A panel of soil, climate and land evaluation experts reviewed a set of land evaluation methods in order 
to elaborate an approach which can support the definition and delineation of the so called 
“Intermediate Less Favoured Areas for agriculture (iLFA)” in EU27. The driver for this exercise is 
Article 50.3 of EC-Regulation 1698/2005 calling for the revision of the existing system based on 
criteria related to low soil productivity and poor climate conditions for agriculture. FAO’s agricultural 
problem land approach was selected and adjusted to come forward with the requested approach. The 
FAO approach was deemed appropriate because it is not crop-specific and for its simple assumptions 
regarding the mutual interaction of land characteristics on the overall suitability of the land, making it 
applicable for a territory as large and diverse as EU27. Two climatic and four soil criteria were 
retained and complemented by one integrated soil-climate criterion (soil moisture balance), with slope 
as the sole topographic criterion. For each criterion two critical limits were defined dividing the 
criterion range into three sub-ranges: not limiting, severely limiting and very severely limiting for 
agriculture. 

The criteria and the associated critical limits or threshold values can be used anywhere to discriminate 
land with biophysical constraints to agricultural production on the basis that soil and climate data of 
sufficient spatial and semantic detail are available. Whereas such datasets are held at regional and 
national levels, Pan-European soil and climate data sets also exist to which the criteria and threshold 
values can be applied. However, their spatial and to a lesser extent semantic resolution is too restricted 
to classify land fully in line with terrain reality. The pan-European assessments are however useful as a 
reference backdrop for assessment of consistency of exercises which use national or regional data sets. 
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1   Policy background 

1.1 Objectives of the LFA scheme 

Certain rural areas are classified as Less Favoured Areas (LFA) because conditions for farming are 
more difficult due to natural constraints, which increase production costs and reduce agricultural 
yields. The aid for the LFA in the European Union (EU) dates back to 1975 and has since then 
undergone several reforms from being focused on addressing rural depopulation towards increased 
focus of maintaining certain agricultural land use and environmental protection. In addition, over time 
Member States have been offered increased flexibility of the implementation of the measure, i.e. 
Member States are responsible for changing the LFA classified, which has resulted in regional 
differences on how the measure is applied within the Member States. 

The LFA measure is currently under the legislation of EC, Council Regulation (1999) No. 1257/1999, 
where the aims of the LFA measure are: 

• to ensure continued agricultural land use 
• to maintain the countryside 
• to maintain and promote sustainable farming 
• to ensure environmental requirements and safeguarding of farming in areas with environmental 

restrictions 
• to contribute to viable rural communities in the LFA 

1.2 Categories 

There are three categories classified as LFA. Each category covers a specific cluster of natural 
handicaps in Europe in which the continuation of agricultural land use is threatened. 

• Mountain areas (Article 18) – are characterised as those areas handicapped by a short growing 
season because of a high altitude, or by steep slopes at a lower altitude, or by a combination of the two. 

• Other LFA (Article 19) – are those areas in danger of abandonment of agricultural land use and 
where the conservation of the countryside is necessary. They exhibit all of the following handicaps: 
land of poor productivity, production which results from low productivity of the natural environment, 
and a low or dwindling population predominantly dependent on agricultural activity. 

• Areas affected by specific handicaps (Article 20) – are areas where farming should be continued 
in order to conserve or improve the environment, maintain the countryside, and preserve the tourist 
potential of the areas, or in order to protect the coastline. 

5 The areas concerned are called 'Intermediate LFAs' to be distinguished from mountain LFAs and from 
LFAs with specific handicaps' 
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2   Support activity from JRC to DG AGRI 

2.1 New definition of the Other LFA – DG AGRI mandate for JRC support 
In 2006, DG Agriculture and Rural Development and the JRC have agreed on a joint technical activity 

to support the identification of possible common criteria for the designation of the “Intermediate 

LFAs”. 

The JRC is providing technical support by (1) defining a Common framework of Soil and Climate 

criteria for defining agricultural areas which are less favourable for Agriculture in Europe and (2) 

assessing the spatial impact of the proposed criteria in term of agricultural areas affected by the new 

designation. 

The boundary conditions as specified by DG Agriculture and Rural Development clearly mentioned: 

• The classification relates to areas that have natural handicaps to agriculture and not to how the 
land is managed (e.g. irrigation or drainage are not considered). 

• Criteria have to apply to agricultural activity in general, not to specific production/crops. They 
implicitly refer to conventional agriculture. 

• The criteria concern the area designation and not the LFA scheme as whole (eligibility rules, 
payment calculation). 

• Criteria have to be adapted for pan-European assessment. They have to provide a common 
framework and cover the whole range of European bio-physical conditions. 

• Criteria must be clear, simple, robust, and easily understandable. 

2.2 Source of information - working procedures 

• Previous research projects: crop modelling, land quality evaluation, agro-meteorological zoning. 
• Compilation from scientific literature 
• Network of experts in the field of land quality assessments, soil, climate, environment, agriculture. 

3 ad-hoc expert meetings at JRC 
• Consultation with international organisations, research institutes and universities: Food and 

Agriculture Organisation (FAO), International Institute for Applied Systems Analysis (IIASA), 
Institut National de la Recherche Agronomique (INRA), Katholieke Universitet Leuven (KUL), 
International Institute for Geo-Information Science and Earth Observation (ITC). 

• An ad-hoc consultancy was organised by JRC with top European experts, specialist in agro-
meteorology (soil and climate issues in agriculture). 

2.3 Technical framework 

Soil, climate and terrain are the major determinants of the suitability of land for agricultural use. Every 
crop type has a set of requirements with regards to soil and climate. To yield a harvest, a crop needs 
sufficient physical stability, sufficient but not too much heat and photo-synthetically active radiation, 
oxygen, water and nutrients, in the absence of toxic substances or damaging impacts from storms or 
pests. 
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The fact that crop requirements for stability, heat, radiation, oxygen, water, nutrients and absence of 
toxins and damaging agents must be met by the conditions or ‘services’, supplied by the prevailing soil 
and climate, is the basis for the science and practice of physical land evaluation (FAO 1976; Bouma 
1989; van Diepen et al., 1991). 

For keeping the method simple, robust and transparent, a restricted selection of elementary soil, 
climate and terrain characteristics is made which are judged to be most pertinent for distinguishing 
land according to its suitability for the generic agricultural activity, and the interaction of the selected 
land characteristics on the growth of crops is accounted for by one additional characteristic, the soil 
moisture balance. The reasons for choosing the modified “Problem Land approach” rather than a more 
elaborated Land Quality approach (a part from its simplicity) can be explained by the objectives 
pursued i.e. to identify areas with constraints to agriculture and not to identify all necessary conditions 
to reach optimal production for each kind of crop. Also, the work has been focussed on the common 
criteria, their definition and thresholds for indicating biophysical constraints to agriculture; the 
application of criteria would be done in a different stage. 
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3   Problem statement 

Regulation EC No 1698/2005 provides for payments to farmers in areas with handicaps. Article 50.3 
(a) of the same regulation defines the so-called “Intermediate Less Favoured Areas (iLFA)”5 as areas 
“affected by significant natural handicaps, notably a low soil productivity or poor climate conditions 
and where maintaining extensive farming activity is important for the management of the land”. This 
document refers to a possible common approach that could be used for assessing and defining natural 
handicaps for agriculture in the EU27. 

There are several issues which make this apparent simple endeavour less evident: 

1. Agriculture in Europe encompasses a wide range of crops. 

Requirements for services from soil and climate are mostly crop dependant. In its original and revised 
frameworks for land evaluation, FAO (1976; 2007) highlighted the difficulty to assess detailed 
suitability maps for agriculture as such. In line with the framework, suitability maps would have to be 
created for all individual crops or cropping systems present in the EU, then combined and interpreted. 
As a result it is quite difficult to present one single suitability map encompassing the huge variety of 
crops in a territory as large and diverse as EU27. 

2. Many soil and climate characteristics co-determine suitability and mutually interact. 

A great many elementary soil and climate characteristics affect the behaviour of crops and they do so 
in multiple ways (Thomasson and Jones, 1989). For example, soil depth is not only a measure of the 
volume which is available for growing roots, hence creating stability, but also co-determines the 
capacity to supply water and nutrients. In addition, many of the characteristics interact strongly. In 
general, the presence of a clayey layer limiting root development reduces suitability, but the presence 
of such layer at medium depth may be beneficial for sandy soils to create a perched water table that 
can compensate for the low water storage capacity of these soils. In order to overcome the potentially 
complex problem of matching multiple and interacting land characteristics (LC) with crop 
requirements, FAO (FAO 1976) introduced the concept of Land Quality (LQ). A LQ is defined as a 
combination of land characteristics which acts upon the suitability of the land for a given use (an 
agronomic function). A typical example of a land quality is “Water supply capacity”. This LQ is 
determined by soil characteristics such as depth, granulometry, bulk density, stoniness and by climatic 
characteristics such as amount and regime of precipitation and evaporative demand. The definition and 
quantification of all relevant LQs and their matching with the requirements of the multitude of crops is 
however beyond the scope of most land evaluation exercises covering large zones like EU27. 

3. Delimitation of zones is conditioned by available data. 

Soil and climate characteristics are land attributes which typically show gradual change over space. 
For example, average temperature gradually decreases with increasing elevation, and average winter 
temperature increases with decreasing distance from the sea, while the opposite is often true for 
summer conditions. One consequence is that measurements of depth to rock or temperature are valid 
only for the measurement location (soil sample locations, meteo-stations). In order to define land units 
and delimit zones, the point observations must be interpolated using specific techniques. These may be 
mathematical equations or based on expert-judgement. Soil maps are routinely created by an expert-
based approach, by which soil polygons are delineated with the point observations as reference marks 
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and landscape features providing the spatial basis for interpolation. The amount and density of data 
and the semantic detail available from the point observations determine the spatial and semantic 
resolution of the results that can be obtained. Few available point data, with few characteristics 
recorded with little detail, can only give rise to coarsely delineated areas. Climatic data are often 
interpolated in a mathematical way. The assumption of gradual change of the climate characteristics 
between the available measurement locations is however often not exactly in line with reality since 
also elevation, slope and orientation of slope i.e. co-determine climatic values (Ragg et al., 1988). 

As a consequence, the problem of defining and delimiting land areas with low soil productivity and 
poor climate conditions can be resolved into 3 sub-problems: 

- What are the soil and climate characteristics or qualities having a major and sufficiently 
independent contribution to the suitability of land for agriculture in a European perspective? How 
can these characteristics or qualities be assessed? 

- What are the threshold values or critical scores for these characteristics or qualities to distinguish 
soils with low productivity from other soils and climates with poor conditions for agriculture from 
other climates? 

- How can the scores for each of the selected characteristics or qualities be used and combined as 
criteria to classify and rank land? 

3.1 Materials and methods 

In order to address the stated objectives, a panel of soil, climate and land evaluation experts was 
established by the EC’s Directorate General Joint Research Centre (JRC). Between May 2006 and 
December 2007, this panel met, on three occasions, with representatives of EC’s DG Agriculture and 
Rural Development and JRC’s Rural, Water and Ecosystem Resources Unit (RWER). DG AGRI is 
administratively in charge of implementing Regulation 1698/2005 while JRC is coordinating the 
scientific support. 

The starting point for the expert panel was a review of possible land evaluation methods including the 
Land Capability Classification (Klingebiel and Montgomery, 1961), Framework for Land Evaluation 
(FAO, 1976; 2007), Agro-Ecological Zoning (FAO, 1978; 1996; Fischer et al., 2002), Agricultural 
Problem Land Approach (FAO, 1990 and Nachtergaele, 2006), Expert System for Constraints to 
Agricultural Production in Europe - ESCAPE (Le Bas et al., 2001; 2002). 

A JRC Scientific and Technical Report (European Commission, 2007) and several working documents 
were produced to summarize progress made and conclude these discussions. 

3.2 Results 

With the aim of supporting the designation and delimitation of “Intermediate Less Favoured Areas”, 
based on a set of simple harmonized and EU-wide applicable soil and climate criteria, the expert panel 
reached a consensus on an approach according to the following statements: 

1. No crop specificity. Suitability was considered for a European conventional capital-intensive, 
mechanised, family unit of adapted grain crops or adapted grasses for hay or silage; 

2. Suitability assessment is based on a limited selection of soil and climate characteristics 
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complemented with one topographic characteristic (Table 1), in line with the agricultural problem-
land approach (FAO, 1990; Nachtergaele, 2006). A restricted selection of elementary soil and 
climate characteristics is made which are judged to be most pertinent for distinguishing land 
according to its suitability for the generic agricultural activity, and the interaction of the selected 
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land characteristics on the growth of crops is accounted for by one additional characteristic, the soil 
moisture balance. The reasons for choosing the modified “Problem Land approach” rather than a 
more elaborated Land Quality approach (apart from its simplicity) can be explained by the 
objectives pursued i.e. to identify areas with constraints to agriculture and not to identify all 
necessary conditions to reach optimal production for each type of crop; 

3. Characteristics are either not limiting, severely or very severely limiting. Two critical limits are 
proposed to classify the value of each of the selected individual characteristics into 3 sub-ranges 
(Table 1). Below the severe threshold value, the characteristic is judged not to be sufficiently 
limiting to be considered as a handicap for agriculture. Above the ‘Very Severe’ threshold, the 
characteristic is judged to be very difficult for agriculture so that corresponding areas should not be 
envisaged for agriculture. Values of the characteristics in the range between the severe and very 
severe thresholds are considered to present a biophysical handicap to agriculture, without making 
agriculture impossible; 

4. Criteria are combined according to the agronomic law of the minimum (Liebig’s law). After 
classification in one of the 3 sub-ranges, characteristics can be used as diagnostic criteria to 
identify areas with constraints to agriculture from other types of land. The guiding principle for 
combining the criteria is the law of the minimum. As soon as one of the considered criteria is rated 
as ‘very severely limiting’, the corresponding land is judged to present very severe limitations for 
agricultural production. Similarly, as soon as one criterion is rated as ‘severely limiting’ and no 
other criterion is rated as ‘very severely limiting’, the corresponding land is assessed to be severely 
limiting; 

5. Climate-related criteria are treated in a probabilistic way. In order to account for between-year 
variability of temperature accumulation, heat stress and soil moisture balance, determining the 
length of the growing season, those three characteristics are classified as either not limiting, 
severely limiting or very severely limiting in a probabilistic approach. A characteristic is classified 
as being severely limiting if the probability of exceedance of the severe limit is more than 20% and 
if the probability of exceedance of the very severe limit is lower than or equal to 20%; 

6. Maps of resulting biophysical constraints are not produced. Although the biophysical criteria and 
their critical limits are ultimately meant to produce suitability maps, they were defined and selected 
based on scientific and agronomic considerations independent from a concrete mapping exercise. 
Mapping is left at the discretion of other stakeholders to apply the criteria and threshold values 
presented here to available soil and climate geo-datasets. 
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Table 1: Overview of diagnostic criteria and critical limits 

 

Discussion 

The method presented here is mostly in-line with FAO’s agricultural problem land approach (FAO, 
1990; Nachtergaele, 2006). The difference is that the FAO approach: 

- Does not include an integrated soil-climate criterion such as the soil moisture balance; 

- Has defined for each criterion one threshold value only, to distinguish between no-problem and 
problem land; 

- Does not include a probabilistic approach for dealing with climate-related criteria; 

- Includes the soil characteristic ‘Heavy cracking clay’ as a separate criterion. Here it is merged 
with the ‘Soil texture and stoniness’ criterion. 

 Criterion 
 

Definition

 
Threshold value separating 
non limiting from severely 

limiting 
Threshold value separating 
severely limiting from very 

severely limiting 

Low 
Temperature 

. Length of Growing Period (number of days) defined by number of 
days with daily average temperature > 5°C (LGPt5)  
. Temperature sum (degree-days) for Growing Period defined by 
accumulated daily average temperature > 5°C 

180 days or 
 
1500 degree-days 

150 days or 

 
1200 degree-days 

C
LI

M
A

TE
 

Heat Stress 
Number and length of continuous periods (number of days) within the 
growing period for which daily maximum temperature (Tmax) exceeds 
the threshold 

One or more periods of at least 
10 consecutive days with daily 
Tmax > 35°C 

One or more periods of at least 
10 consecutive days with daily 
Tmax > 40°C 

     

Drainage 
Areas which are water logged and/or flooded for significant duration of 
the year (lack of gaseous oxygen in soil for root growth or land not 
accessible for tillage). 

Poorly drained1  OR  

wet soil within 80 cm for over 6 
months but not wet within 40 cm 
for over 11 months 

Very poorly drained1  OR 

wet soil within 40 cm for over 11 
months 

Texture and 
Stoniness 

Relative abundance of clay, silt, sand, organic matter (weight %) and 
coarse material (volumetric %) fractions in top soil material. 

Soils classified as 
unsorted or coarse or medium 
sand, loamy coarse sand or 

organic; or 
15% of topsoil volume is coarse 
material or 
Heavy clay (>60% clay) or 

Vertisol, clay, silty clay or sandy 
clay with vertic properties 

40% of topsoil volume is coarse 
material or 
Rock outcrop, boulder within 
15cm of the surface 

 
 

Rooting depth Depth (cm) from soil surface to coherent hard rock or hard pan 30 cm 15 cm 

SO
IL
 

Chemical 
properties 
(Salinity, 
sodicity, 
toxicity) 

Presence of salts, exchangeable sodium and gypsum in the topsoil Salinity : 4 dS/m  
Sodicity: 6 ESP 
Gypsum: 15% 

Salinity : 16 dS/m  
Sodicity: 15 ESP 
Gypsum: 40% 

     

In
te

gr
at

ed
 s

oi
l a

nd
 

cl
im

at
e 

cr
ite

rio
n 

Soil Moisture 
Balance 

Number of days within growing period as defined by temperature > 
5°C (LGPt5), for which the amount of precipitation and water available 
in the soil profile exceeds half of potential evapotranspiration  

90 days  60 days 

     

TE
R

R
A

IN
 

Slope Change of elevation with respect to planimetric distance (%) 15% 30% 

 

1 as defined by Soil Survey Division Staff - 1993 
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The assumption of mutual independency of the characteristics and the application of the law of the 
minimum is common to both. 

The climatic criteria pertain to the need for sufficient heat in the absence of damaging hot periods. 

The soil drainage criterion is selected based on the need for sufficient but not too much water being 
available. 

Texture, stoniness and rooting depth are selected for their influence on nutrient availability, available 
water capacity, drainage and plant stability. 

The three chemical soil characteristics refer to the required absence of toxic agents. The integrated 
soil-climate criterion ‘soil moisture balance’ expresses the fundamental interaction between soil and 
climate for water availability. Water will be supplied outside periods of precipitation by the soil water 
store. 

Finally, slope has been retained as the sole topographic criterion for its decisive impact on the 
potential use of agricultural machinery. All this follows a very similar rationale adopted for forestry 
(e.g., Ray 2001). 

Given the generalized nature of this exercise, the ‘problem land’ approach was selected for its 
simplicity, robustness, transparency, ability to identify areas with natural handicaps (rather than 
estimating agronomic potential) and was adapted to be non crop specific. The Land Capability system 
(Klingebiel and Montgomery 1961) has been developed for farm planning purposes assuming an 
implicit hierarchy of desirability of crops rather than for regional assessments. The Land Quality (LQ) 
approach as prescribed by the FAO framework for land evaluation (FAO 1976) was not adhered to for 
its explicit crop specificity and the complexity of identifying and assessing the LQs. Although 
suitability assessment by the ESCAPE system (Le Bas et al. 2001 and 2002) starts from similar 
elementary land characteristics as the problem land approach, it adds the definition of combinations of 
characteristics in a crop-specific matching exercise. From the Agro-ecological zone approach (FAO 
1978; 1996), the innovative concept of length of growing period and soil-water balance and the 
probability-based approach for climate-related characteristics have been adopted for the adjustment of 
the methodology proposed here. 

The application of the ‘law of the minimum’ to the criteria presented here, with associated threshold 
values, is a simple but consistent way of categorizing locations or areas for which the selected 
characteristics have been observed, measured or estimated with a compatible semantic resolution, as 
locations or areas with (or without) significant soil and climatic constraints to agriculture. 

Both for the semantic and the spatial dimensions, the accuracy of applying the criteria to separate 
constrained areas from other zones, is data dependent. If the semantic resolution of the available 
observations, measurements or estimates is higher (more classes) or different (class boundaries) than 
what is proposed, a re-assessment by (dis)aggregation is necessary. This implies a certain loss of 
information and increase of uncertainty. If the available observations, measurements or estimates 
pertain to specific points in space, interpolation to contiguous areas is required in order to produce 
maps which can be further processed using GIS-technology, e.g. to estimate the share of agricultural 
land use on these areas. The amount and density of the available point data will determine the 
applicable, meaningful spatial resolution for interpolation. 
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Member States or other responsible agents will be required to apply the criteria using the most 
appropriate available data sets. The results will differ from those obtained by applying the criteria with 
available pan-European soil (European Soil Database-King et al., 1994; 1995) and climate data sets 
(MARS-Vossen and Meyer-Roux, 1995), although the general patterns and proportions should be 
consistent. If applied judiciously, results of national or regional applications will outperform the pan-
European application in terms of accuracy of the position of boundaries between zones, the accuracy 
of the labels attributed to the zones and in terms of omission or commission of zones. 

Changing climate is a reality in Europe (IPCC, 2007). Zones for which current climate and combined 
soil-climate conditions justify their designation as constrained to agriculture, may no longer match the 
criteria in the near future and vice versa. However, the set of diagnostic soil and climate criteria 
presented, with critical limits, remains valid. Application of the criteria to updated climate data, or to 
“likely” data as derived from climate change scenarios, will help to estimate future changes to the 
extent of the natural constraints to agriculture and to revise boundaries accordingly. 

Conclusions 

A panel of experts in physical land evaluation has reached agreement on a set of soil and climate 
characteristics, with associated critical limits, and on Liebig’s law of the minimum for their 
combination, so that they can be used as criteria to classify land in three broad classes: land without 
soil and climate constraints to agriculture, land with severe soil and climate constraints and land with 
very severe soil and climate constraints that preclude agricultural activity. The set of criteria are in-line 
with an extension of FAO’s agricultural ‘problem land’ approach, while the threshold values have 
been derived from and justified by state-of-the-art scientific knowledge and expert peer-review. The 
results can be used to effectively delimit the three types of areas and portray them in map form on 
condition that reliable base data (observations, measurements or estimates) are available with a 
sufficient spatial and semantic resolution. The amount and density of point observations, the spatial 
resolution of area estimates and the semantic resolution of all data do inevitably have a decisive 
influence on the spatial and semantic quality of the final maps. 
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5   Annexes: Fact Sheets of the proposed criteria 

Criterion 1 “Low temperature” 

Authors: Guenther Fischer, Edmar Teixeira and Harrij van Velthuizen, IIASA, Laxenburg, 
Austria, 

Edited by: Jos Van Orshoven (K.U.Leuven, Leuven, Belgium) and Jean-Michel Terres (JRC, 
Ispra, Italy), 

Agronomic importance 

Low temperatures limit crop growth and development through the impact on important physiological 
processes such as photosynthesis and leaf appearance. Land in which thermal-time accumulation 
systematically is not sufficient for crops to complete the production cycle is unfavorable for 
agriculture. 

Definition 

Low temperature is defined as the condition in which crop performance or survival is compromised by 
temperatures during the growing period which are insufficient for optimal growth and development of 
crops. 

In the context of less favourable areas for agriculture in Europe, low temperature is a characteristic of 
land for which thermal-time accumulation during the growing period is insufficient for plants to 
complete the production cycle. 

Scientific background 

Agricultural crops are able to grow and develop only within well defined ranges of temperature (Porter 
and Gawith, 1999). The most common agricultural crops in Europe are (i) C3 crops adapted to cool 
temperatures ranging from 5-30oC (e.g. wheat, potato), C3 crops adapted to warm temperatures 
ranging from 15-35oC (e.g. soybean, rice) and (iii) C4 crops adapted to moderately warm temperatures 
ranging from 10-35oC (e.g. maize, sorghum) (FAO, 1978-81). These climatic thresholds are mostly 
explained by the impact of temperature on enzymatic activities that regulate the rates of important 
plant physiological processes, such as photosynthesis and leaf appearance (Bonhomme, 2000). Growth 
rates and yields are maximized when crops are grown near the species-specific optimal temperature 
(Topt) but gradually decrease at lower temperatures until the base temperature (Tb) is reached, at which no 
development occurs. Similarly, at temperatures higher than Topt development rates decline until a 
critical temperature (Tcrit), near lethal levels (Hodges, 1991). Negligible growth occurs for most 
agricultural crops at temperatures below 5oC or above 35-40oC (Porter and Semenov, 2005). When 
crops are grown under lower than optimal temperatures, yields can be reduced by various mechanisms 
(Porter and Gawith, 1999) including: limited light interception (e.g. due to slow leaf area expansion), 
inefficient conversion of intercepted light into biomass (i.e. reduced photosynthesis rates), or direct 
damage to plant tissues caused by early or late frosts. 

To successfully complete the growth cycle and fully attain their yield potential at harvest, crops have 
to be able to reach full canopy expansion and pass through specific phenological stages such as 
germination, flowering and maturity (Hodges, 1991). The rate of progress towards each of these 
phenological stages is largely regulated by temperature (Jamieson et al., 1995; Bonhomme, 2000). 
This explains why the length of the growth cycle of crops is variable when expressed in ‘days’ from 
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emergence to maturity but conservative when expressed in ‘thermal-time’ (degree-days, oCd) (Hodges, 
1991). Specific thermal-time accumulations are needed for the completion of each phenological stage, 
until crops complete an entire production cycle. 

The combination of temperature thresholds and thermal-time accumulation requirements can be used 
to characterize land areas with temperature limitations. 

Assessment 

To assess low temperature as a land characteristic, the concepts of length of temperature growing 
period (LGPt, days) and thermal-time sums (TSb, degree days, oCd) are used in combination. 

Firstly, the length of the temperature growing period (LGPt5), i.e. the number of days with daily 
average temperatures (Tavg) above 5oC is calculated for each year. The LGPt5 characterizes the days in 
which temperatures are conducive to crop growth. 

Secondly, for the days within LGPt5, thermal-time sums (TSb), above a base temperature (Tb) of 5oC, 
are calculated by accumulating the difference between daily Tavg and Tb. 

Finally, calculated values1 of LGPt5 and TSb are compared with reference thresholds for severe and 
very severe limiting conditions. 

For this calculation, it is recommended to use data-sets with daily average temperature (Tavg) from 
time-series. 

Values for severe and very severe threshold 

Temperature thresholds and thermal requirements for plant development vary among crop species and 
cultivars (Hodges, 1991). For European conditions, thermal-time sum requirements can be used as a 
reference to delimit thresholds for the development of agricultural crops. 

In general, optimal thermal-time requirement for most agricultural crops is above a TS5 of 1500oCd 
(Boons-Prins et al. 1993). A TS5 of 1200oCd coincides with the most northern distribution of cereal 
crops in Europe. Below this TS5 threshold of 1200oCd, crops cannot grow because of very marginal 
thermal-time accumulation and increased risk of early and late frosts (Fischer G. et al. 2008 
forthcoming). 

Therefore 

- Severely limiting low temperature is said to occur if LGP t5 is between 150-180 days or TS5 is 
between 1200-1500oCd 

- Very severely limiting low temperature is said to occur when LGP t5 is ≤150 days or TS5 is 
≤1200oCd (Tb=5oC). 

In order to take account of between year variability of meteorological conditions, a probabilistic 
approach is required. It is proposed to use the 80% / 20% probability exeedance / non exceedance 
approach: if in 3 or more years out of 10, the threshold value for severe or very severe low temperature 
condition is not reached, the land is classified as being under (very) severe low temperature limitation. 

A time series of daily meteorological data preferably over 30 (or more) recent years is required to 
assess the probability of exceedance. 

Final remarks and conclusions 
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Low temperatures have an important impact on crop yield by limiting plant growth and development 
processes. Land areas where thermal-time sums are insufficient for crops to complete their production 
cycle are considered unfavorable for agriculture. This can be evaluated by using thresholds of thermal-
time requirement. 
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Criterion 2 “Heat Stress” 

Authors: Guenther Fischer, Edmar Teixeira and Harrij van Velthuizen, IIASA, Laxenburg, 
Austria 

Edited by: Jos Van Orshoven (K.U.Leuven, Leuven, Belgium) and Jean-Michel Terres (JRC, 
Ispra, Italy) 

Agronomic importance 

Episodes of high temperature, particularly during critical plant development stages drastically reduce 
yields of field crops. Land in Europe that is subjected systematically to one or more periods of 
continuous days within the growth period, for which maximum temperatures exceed 35oC, must be 
recognised as less suitable for agriculture. 

Definition 

Heat stress is defined as the condition in which crop performance or survival is compromised by 
periods of exposure to high temperatures (Wheeler et al. 2000). 

In the context of less favourable areas for agriculture in Europe, heat stress is a characteristic of land 
which is subjected to one or more periods of continuous days within the growing period, for which 
maximum daily temperature (Tmax) exceeds 35oC. 

Scientific background 

Temperature largely controls the rates of growth (e.g. photosynthesis) and development (e.g. leaf 
appearance, flowering) in crops (Hodges 1991). Heat stress occurs when the temperature experienced 
by the plant exceeds critical thresholds for optimal functioning of these physiological processes to 
operate (Porter and Semenov 2005). The temperatures conducive for plant growth and development 
range from 5 to 35oC for the most common crop groups in Europe, with optimal yield performances 
obtained from 15 to 30oC (Table 1). 

Table 1. Temperatures conducive for growth and for optimal agronomic performance in the most 
common crop groups in Europe (FAO 1978-81). 

Crop 
Group* 

Growth temperatures (oC) Optimum temperatures (oC) Examples 

 Min Max Min Max  

C3 I 5 30 15 20 Wheat, barley, potato, beet, rape. 

C3 II 15 35 25 30 Soybean, rice, cotton. 

C4 II 10 35 20 30 Maize, sorghum, millet. 
 

* Criteria based on crop photosynthetic pathway and optimal temperature regimes. Crop groups are 
adapted to cool (C3 I), warm (C3 II) or moderately warm (C4 II) conditions. 



 

EN 35   EN 

Warmer than optimal mean seasonal temperatures may limit photosynthesis rates and accelerate crop 
development (i.e. shorten crop cycle length) with consequent reduction in light interception and yield 
(Batts et al. 1997; Bonhomme 2000). Of particular importance, is the occurrence of high temperatures 
during critical phases of crop growth, notably the reproductive stage (Wheeler et al. 2000). Near the 
time of flowering, crops are particularly sensitive to high temperatures. Exposure to short episodes of 
high temperature during this thermal-sensitive period reduces the set of fruits and grains and limits 
grain filling. Possible impacts include a reduction in the number of flowers, number of pollens, pollen 
tube growth, pollen release, pollen viability and flower fertility (Prasad et al. 2006a). Overall, yield is 
more affected than total biomass accumulation which implies a lower harvest index in crops 
subjected to heat stress (Prasad et al. 2006b). 

The impact of heat stress may be exacerbated in conditions of drought stress. This occurs when canopy 
evaporation is limited and there is an increase in the temperature of plant tissues. 

Assessment 

Heat stress as a land characteristic can be assessed by (i) comparing ambient temperatures with 
thresholds for optimal plant functioning and (ii) identifying the period for which these temperature 
thresholds are exceeded (e.g. Challinor et al. 2005). For several crops, temperatures above 35oC were 
shown to cause damage to yield and reproductive development (Wheeler et al. 2000; Porter and 
Semenov 2005). The thermal-sensitive period usually spans from one to two weeks around flowering 
(Brammer et al. 1988). 

Even short periods of exposure to high temperatures, to the order of days or hours, are sufficient to 
reduce crop yield significantly (Matsui and Omasa 2002). Therefore, to quantify heat stress, it is 
necessary to use data-sets with a time resolution sufficiently short to characterize peaks of temperature. 
For such, it is recommended to use historical time series-data containing ‘daily maximum’ 
temperatures (Tmax) instead of, for example, averaged seasonal data or the use of mean temperatures 
(Tmean). 

Values for severe and very severe threshold 

Thresholds for heat stress have been identified for important crops including wheat (Ferris et al. 1998), 
rice (Matsui et al. 2000), brassicas (Young et al. 2004), tomato (Sato et al. 2004), barley (Wallwork et 
al. 1998) and soybean (Salem et al. 2007). These thresholds are different among crops and also vary 
within species, i.e. tolerant and sensitive cultivars were identified for several crops (e.g. Prasad et al. 
2006b). In general, yield loss is observed at temperatures above 30oC while the magnitude of damage 
increases with the period of exposure. Yield loss is usually severe above 35oC increasing at higher 
temperatures until complete damage is observed at above 40-45oC, near lethal temperatures (Porter and 
Gawith 1999; Challinor et al. 2005). 

Therefore: 

- Severe heat stress is said to occur when “one or more periods of at least 10 consecutive days with 
daily maximum temperatures above 35oC” are observed; 

- Very severe heat stress is said to occur when “one or more periods of at least 10 consecutive days 
with daily maximum temperature above 40°C” are observed. 

In order to take account of between year variability of meteorological conditions, a probabilistic 
approach is required. It is proposed to use the 80% / 20% probability exeedance / non exceedance 
approach: if in 3 or more years out of 10, the threshold value for severe or very severe high 
temperature condition is reached, the land is classified as being under (very) severe heat stress 
limitation. 
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A time series of daily meteorological data preferably over 30 (or more) recent years is required to 
assess the probability of exceedance. 

Final remarks and conclusions 

Heat stress is an important constraint to crop production. Episodes of heat stress may become more 
frequent and widespread with global warming (Tebaldi et al. 2006). Water limitation may aggravate 
the impact of heat stress. Future selection and breeding of tolerant species and cultivars may minimize 
the impact of heat stress (Challinor et al. 2007). 
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Criterion 3 “Soil drainage and flooding” 

Author: David Rossiter, ITC, Enschede, the Netherlands 

Contributor: Bob Jones, Cranfield University, United Kingdom, 

Editor: Jos Van Orshoven (K.U.Leuven, Leuven, Belgium) and Jean-Michel Terres (JRC, 
Ispra, Italy) 

Agronomic importance 

Poor drainage reduces the space for the gaseous phase, in particular gaseous oxygen, in the rooting 
zone. It increases the incidence and severity of soil-borne pathogens and makes tillage impossible. A 
main additional effect of flooding on agriculture is to make the land inaccessible while flooding may 
also physically damage standing crops. Coastal flooding with brackish water can result in the same 
damage as salts in the soil. 

Definition 

Soil drainage refers to the maintenance of the gaseous phase in soil pores by removal (or non-addition) 
of water. In the FAO Guidelines for Land Evaluation (Rainfed agriculture) (FAO, 1983) it is referred 
to as LQ4 “Oxygen availability to roots (drainage)”. 

A soil has internal drainage, i.e. the facility for removing excess water by gravity, and external 
drainage, i.e. the amount of water removed (or not added) by its position in the landscape with respect 
to contributing overland areas (runoff) or groundwater. 

Flooding refers to the submergence of the land surface by water overflowing from rivers and streams 
or along tidal estuaries. The resulting temporary water bodies occupy flat areas adjoining these 
drainage systems, known as floodplains. Therefore flooding is a site, rather than a soil characteristic, 
and in the FAO Guidelines for Land Evaluation (Rainfed agriculture) (FAO 1983) it is referred to as 
LQ11 “Flood hazard”. 

Scientific background 

Surplus water in the rooting zone is normally the result of a high ground water table, following periods 
of heavy precipitation or flooding, for example during the wet winters characteristic of north west 
Europe, or a perched water table resulting from surplus water in the upper layer of the soil stagnating 
above a very slowly permeable or impermeable subsoil horizon. The latter type of soil water regime is 
quite common in the lowlands of England. 

The main effect of poor drainage is to reduce the space for the gaseous phase, in particular gaseous 
oxygen, in the rooting zone. Crops suffer severely when their roots are deprived of gaseous oxygen. 
The notable exception is rice. The length of time without oxygen that causes severe damage varies 
among species. 

A second effect is to increase the incidence and severity of soil-borne pathogens such as Pithium spp. 
fungi and root rotting bacteria such as Erwinia spp. 

A third effect is to make tillage impossible, because machinery becomes bogged down or the soil 
structure is easily destroyed if tilled when too wet. 
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A main effect of flooding on agriculture is to make the land inaccessible, thus tillage and harvesting 
are impossible. All the effects of poor soil drainage also, their severity depend on the duration of 
flooding. Flood water must either evaporate or drain (internally) through the soil or runoff as overland 
flow. Water draining internally carries nutrients (e.g. nitrates) and sometimes pollutants, which can 
seep into the ground water. Flooding, if rapid may also physically damage standing crops, by flattening 
them or coating them with sediments. Coastal flooding with brackish water can damage the soil, 
turning it saline. 

Surface water, whether from flooding or very high or perched water tables, must be allowed to 
thoroughly dry before the soil is trafficked or worked. In practice, this condition may not be fully 
realized. Any subsequent traffic and tillage commonly will degrade the soil, leading to compaction, 
massive structures and surface crusting. 

Assessment 

Ideally, drainage status is determined by monitoring wells (Daniels et al., 1971) or measurements of 
the soil redox potential. However this is impractical except at research sites. Therefore soil 
morphology is commonly used to assess drainage. These morphological indicators have been related to 
actual drainage status by research. 

Drainage can be described as a natural drainage class that refers to the frequency and duration of wet 
periods under conditions similar to those under which the soil developed (i.e. ignoring any artificial 
drainage). In the USDA-NRCS system (Soil Survey Division Staff 1993), there is no distinction made 
between internal and external drainage, so that soil drainage is determined by a combination of the 
internal saturated hydraulic conductivity, water table level, additional water from seepage, water 
gained or lost by runoff, evatranspiration and rainfall. 

Relevant classes from Soil Survey Division Staff (1993) are: 

- “Somewhat poorly drained. Water is removed slowly so that the soil is wet at a shallow depth for 
significant periods during the growing season. The occurrence of internal free water commonly is 
shallow to moderately deep and transitory to permanent. Wetness markedly restricts the growth of 
mesophytic crops, unless artificial drainage is provided. The soils commonly have one or more of 
the following characteristics: low or very low saturated hydraulic conductivity, a high water table, 
additional water from seepage, or nearly continuous rainfall.” 

- “Poorly drained: Water is removed so slowly that the soil is wet at shallow depths periodically 
during the growing season or remains wet for long periods. The occurrence of internal free water is 
shallow or very shallow and common or persistent. Free water is commonly at or near the surface 
long enough during the growing season so that most mesophytic crops cannot be grown, unless the 
soil is artificially drained. The soil, however, is not continuously wet directly below plow-depth. 
Free water at shallow depth is usually present. This water table is commonly the result of low or 
very low saturated hydraulic conductivity of nearly continuous rainfall, or of a combination of 
these. 

- “Very poorly drained. Water is removed from the soil so slowly that free water remains at or very 
near the ground surface during much of the growing season. The occurrence of internal free water 
is very shallow and persistent or permanent. Unless the soil is artificially drained, most mesophytic 
crops cannot be grown. The soils are commonly level or depressed and frequently ponded. If 
rainfall is high or nearly continuous, slope gradients may be greater.” 

Drainage status is also reflected in many soil classification systems. The USDA Soil Taxonomy (Soil 
Survey Staff 1999, 2003) describes the soil moisture regime for each soil individual as part of the soil 
family name. These are defined by the ground water level and the seasonal presence or absence of 
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water held at tensions less than 1500 kPa in the defined moisture control section, under a crop or 
vegetation typical for the soil. The aquic moisture regime is a reducing regime in a soil that is virtually 
free of dissolved oxygen because it is saturated by water during some period when biological activity 
is possible. This is reflected in the soil morphology. 

The World Reference Base (IUSS Working Group WRB 2006) does use the concept of soil moisture 
regimes per se, but defines several soil properties directly related to poor drainage, namely gleyic and 
stagnic features based on soil colour variations. These features are used to define Reference Groups 
(Gleysols and Stagnosols). Other reference groups are associated with poor internal drainage: the 
Planosols, Solonetz and Vertisols. 

Flooding is described by its frequency (return period) and duration (time the water stays on the land). 
The USDA-NRCS (Soil Survey Division Staff 1993) classifies frequency as none, rare (1 to 5 times 
per 100 years), occasional (5 to 50 times), and common (>50 times), and duration as extremely brief (< 
4 hours), very brief (4 – 48 hours), brief (2 – 7 days), long (7 days to 1 month), and very long. The 
FAO Guidelines for soil description (FAO, 2002) do not record flooding. 

The World Reference Base (FAO-IUSS-ISRIC, 2006) includes the Fluvisol reference group for 
genetically young soils developed in recent alluvial deposits. However, there is no direct link to 
current flooding frequency or duration, although many Fluvisols under natural conditions are indeed 
flooded periodically. 

Values for severe and very severe threshold 

These thresholds identify land areas that are waterlogged and/or flooded for significant periods during 
the normal growing season and thus affect normal farming operations or crop yields. The very severe 
threshold is designed to identify soils that are too wet to allow normal farming operations for adapted 
crops, or which have a high risk of crop failure, either due to direct damage or prevention of normal 
farming operations, due to flooding. The severe threshold is designed to identify soils on which 
farming operations for adapted crops are possible, but with severe yield reductions due to late planting 
or poor tillage, crop damage by transient anoxic conditions or plant pathogens resulting from poor 
drainage, or a substantial risk of crop damage due to flooding. 

Therefore: 

- Soil drainage or flooding is said to be severely limiting if with regard to drainage the soil is 
classified as wet within 80 cm for over 6 months, but not wet within 40cm for over 11 months OR 
classified as poorly drained (soils are commonly wet for considerable periods; ground water table 
commonly <40 cm; 

and/or with regard to flooding the land is occasionally flooded (5 to 50 times per 100 years). 

- Soil drainage or flooding is said to be very severely limiting if with regard to drainage, the soil is 
wet within 40cm for over 11 months OR classified as very poorly drained (wet at shallow depths 
for long periods; ground water table is commonly <10 cm; 

and/or if with regard to flooding the land is commonly flooded (>50 times per 100 years). 

Final remarks and conclusions 

Soil drainage (oxygen status) and flood hazard are two major constraints to agriculture, generally 
requiring expensive technical adaptations (artificial drainage, ditching, pumping, flood control); in that 
sense areas with these limitations can be considered ‘less favoured’ for agriculture. Such areas are 
often best left to seasonal pasture, specialty crops, or nature. 
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In case of very severe constraint, the short potential period of reasonable oxygenation in the shallow 
root zone, makes it impossible to plant, grow and harvest a crop. With an equal chance of flooding in a 
given year, the producer faces a high risk of crop failure. 

Given severe constraint, poorly-drained soils can support only shallow-rooted crops, and only for 
limited periods, with a small window for tillage, growth and harvesting, without artificial drainage. 
The indicated flooding hazard can be tolerated but leads to a significant economic loss over the 
medium or long term. 

In many areas of Europe with natural drainage problems, soils have been artificially drained, often for 
centuries. If these drainage works are considered now part of the landscape, the drained soil units 
should be evaluated as if they were better drained than without the installed drainage systems. 
Normally artificial drainage systems improve the water regime by at least one class. 

Drainage classes may be inferred from soil classification or directly from soil morphology by national 
experts; however there is not always a direct relation between a taxonomic class (e.g. Gleysols) and 
actual drainage conditions; this is always an inference. 
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Addendum to Criterion 3 “Soil drainage and flooding” 

Working note: Use of the “Field Capacity Day” concept for assessing the drainage criterion (still to be 
validated by experts). 

Agronomic importance 

“Field Capacity Day” concept can be used to plan land drainage schemes, assess workability and 
trafficability of land and estimate the potential grazing season (Jones and Thomasson (1985)). 
Provided allowance is made for soil properties, it can also be used as a measure of accessibility to land 
for machinery or livestock without causing damage to soil structure. 
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Definition 

The “Field Capacity” term refers to the maximum amount of water which a soil retains solely under 
the influence of gravity. Its calculation has been documented by Smith and Trafford (1976) and has 
been long appreciated by agriculturalists and drainage engineers. 

The term field capacity (FC) is used in the meteorological sense to mean the condition of zero soil 
moisture deficit rather than a specific water content or water potential (Webster and Beckett 1972). 

Assessment 

The fact sheet on drainage and flooding describes how soil drainage is generally determined i.e. 
through monitoring wells and/or soil classification systems where the soil moisture regime often is 
included for each soil individual of its soil name. Moreover, certain soils properties are also directly 
related to poor drainage. These are the more common approaches for assessing soil moisture excess 
related to drainage. However, waterlogging can also be assessed through a soil water balance to 
estimate the number of days at “Field Capacity”, with the use of soil hydraulic properties and weather 
data. 

The factsheet on criterion 7, Soil moisture balance, suggest the calculation of the LGP for an indication 
of aridity. However, the same tool can be considered to estimate the excess water during the growing 
period for situations when rainfall exceeds potential evapotranspiration, P>ETo. A standard soil water 
budget calculation with the Thornthwaite (1948) method can be applied for assessing the number of 
days that the soil is too wet for agricultural activities, i.e. at or above field capacity. According to Jones 
and Thomasson (1985), this approach, occurrence of wet conditions tend to be underestimated if 
“excess” is not considered to remain available to re-infiltrate in the soil, thus to feed wetness during the 
following days. To account for re-infiltration of excess water, one may allow the soil to absorb an 
additional amount of water above field capacity, i.e. to increase the available water capacity (AWC) 
parameter in the Thornthwaite water budget method. The maximum amount that can be absorbed is up 
to soil saturation. However, this tends to overestimate high soil moisture conditions for most cases. A 
practical intermediate solution might be to adopt an extra amount between field capacity and saturation. 
For instance, 10 mm soil storage in excess of field capacity has been used for British1 and Irish 
conditions2. A crop growth model can also be used for estimating waterlogging. 

Values for a severe and very severe threshold 

See drainage factsheet. 
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Criterion 4 “Soil texture and Stoniness” 

Author: David Rossiter, ITC, Enschede, the Netherlands 

Contributor: Bob Jones, Cranfield University, United Kingdom 

Edited by: Jos Van Orshoven (K.U.Leuven, Leuven, Belgium) and Jean-Michel Terres (JRC, 
Ispra, Italy) 

Agronomic importance 

Soil texture is directly related to water-holding capacity and nutrient supply. Texture affects 
workability (ease of tillage), water infiltration, runoff, and movement within the soil (both down and 
up). 

Definition 

The texture of a soil refers to the relative proportions of different-sized soil particles in the bulk soil. 
It is more correctly called the particle-size distribution. Conventionally it is divided into two parts: 
coarse fragments > 2 mm effective diameter, and the fine soil. Both parts are further subdivided. 
Commonly-used classifications are from the USDA-NRCS (Soil Survey Division Staff 1993) and the 
FAO (FAO 2006). 

Another definition of soil texture is the feel or perceived resistance to various manipulations of loose 
soil samples in the field. This perception is mostly controlled by particle-size distribution, as well as 
the type of clay, the amount of organic matter (mostly in surface horizons) and the presence of 
calcium carbonate. The difficulty with this definition is the subjective field determination, using 
descriptive keys (e.g. Table 25 in FAO 2002), although experienced field scientists generally agree 
with each other and can estimate the clay and silt contents with considerable accuracy (Hodgson et 
al., 1976). 

Scientific background 

Soil texture is a soil characteristic which plays an important role in many land qualities. In the FAO 
Guidelines for Land Evaluation (Rainfed agriculture) (FAO 1983) it is important in LQ3 “Moisture 
availability”, LQ4 “Oxygen availability to roots”, LQ5 “Nutrient availability”, LQ6 “Nutrient 
retention”, LQ7 “Rooting conditions”, LQ16 “Soil workability”, LQ24 “Erosion hazard” and can 
play a role in several others. It is quite difficult to isolate the effects of soil texture without reference 
to these land qualities. 

Soil texture is directly related to water-holding capacity and nutrient supply. Soil colloids (clays) 
hold almost all the nutrients supplied by the mineral soil, whether the products of weathering or as 
added fertilizers or manures. Pores hold water hygroscopically at different tensions against plant 
extraction and gravity; the size of pores is directly related to the particle-size distribution. Texture 
controls soil structure, affecting workability or ease of cultivation (Thomasson and Jones, 1989), 
water infiltration, runoff, and movement within the soil (both down and up); although the type of 
clay mineral also has an important effect. 
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The silt and very fine sand fraction is associated with a high susceptibility to accelerated water and 
wind erosion (Hudson 1995). Soils with high proportions of these fractions require intensive soil 
conservation practices. 

Coarse fragments directly reduce the volume of soil exploitable by roots, thus reducing. water-
holding capacity and nutrient supply. Sufficiently large coarse fragments prevent tillage, and even 
smaller coarse fragments wear on tillage implements. However, coarse fragments can help aerate and 
heat the soil, provide paths for rapid water entry, and slow runoff. 

An important aspect of “texture” is the physical reaction of the soil to wetting and drying. This is 
recognized in soil classification systems such as the World Reference Base (WRB) (IUSS Working 
Group WRB 2006) by defined soil properties, in particular “vertic” properties. Vertic properties 
severely limit tillage options: the soil changes from hard and dry to plastic and sticky over a narrow 
range of water contents, leaving only a small window for conventional tillage. Shrinking and 
swelling during the growing season can also damage plant roots (Wilding et al. 1988). 

Assessment 

Textural class of the fine earth and coarse fragments are both expressed as classes defined by the 
FAO (FAO, 2006), based on the proportions of the particle-size separates (fractions) in the soil 
sample. 

 

Figure 1: FAO Texture triangle 

Coarse fragments (> 2 mm) are described by their abundance (volume %), size, shape, state of 
weathering, and nature. Abundances are none, very few (2 % v/v upper limit), few (5 %), common 
(15%), many (40 %), abundant (80 %), and dominant (100 %). Sizes are fine gravels (upper limit 0.6 
cm largest dimension), gravels (2 cm), coarse gravels (6 cm), stones (20 cm), boulders (60 cm) and 
large boulders (200 cm); larger fragments are considered continuous rock. Coarse fragments are 
generally estimated in the field, except for gravels, which are collected with the soil sample and 
weighed in the laboratory (van Reeuwijk 2002). 

Fine earth (<2mm) is defined by the relative proportions (by weight) of sand, silt and clay as 
determined in the laboratory (e.g. van Reeuwijk 2002). The upper limits used here correspond to the 
FAO norms (FAO 2006) and are 2000, 63, and 2 micrometers. This differs from the other most 
commonly used system, USDA-NRCS (Soil Survey Division Staff 1993) which uses 50 instead of 63 
micrometers to separate sand from silt. Other national systems may use different limits but it is 
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possible to harmonise data using transfer functions. Laboratory methods, while apparently objective, 
are subject to relatively wide discrepancies even among certified laboratories (van Reeuwijk 1984). 

Vertic properties are defined by the WRB (IUSS Working Group WRB 2006) as having either (1) >= 
30 % clay throughout a thickness of at least 15 cm and one or both of the following: (a) slickensides 
or wedge-shaped aggregates; or (b) cracks >= 1 cm wide that open and close periodically; or (2) a 
coefficient of linear expansion (COLE) of 0.06 or more averaged over depth of 100 cm from the soil 
surface. Cracks and slickensides are observed in the field; COLE is measured in the laboratory (Dane 
et al. 2002). 

Values for severe and very severe threshold 

Over 40% coarse fragments reduce water-holding capacity by at least 40%, exacerbating seasonal 
droughts in most European climates. In addition, coarse fragments damage tillage equipment whereas 
rock outcrops and boulders prevent tillage altogether. Coarse sand has almost no water-holding 
capacity, due to the large pores, and almost no nutrient holding or supplying capacity such that 
normal fertilization practices are ineffective. Heavy clays are difficult to cultivate and, although the 
available water capacity is neither large nor small, the water is held at large suctions (high tension) 
making it difficult for plant roots to extract it. Most clay soils also have very slow permeability so 
that excess water ponds on the soil surface after even moderate rains rather than draining downwards 
through the soil profile. Silts are very susceptible to water and wind erosion and difficult to protect 
against these processes of soil loss. Vertic properties limit tillage options and may result in direct 
physical damage to plant roots on wetting and drying. 

Therefore: 

- Soil texture is said to be severely limiting if any of: (1) 15 - 40% volume of coarse fragments of 
any kind in topsoil; or (2) average texture class of rooting zone is (a) unsorted or medium sand, 
coarse loamy sand, (b) heavy clay (> 60% clay); or (3) organic soil1 as defined with organic matter 
(>30%) of more than 40 cm either extending down from the surface or taken cumulatively within 
the upper 80 cm of the soil (FAO Problem soil data base); or (4) texture class of clay, silty clay, or 
sandy clay with vertic properties as defined by the WRB (2006). 

- Soil texture is said to be very severely limiting if any of: (1) > 40% volume of coarse fragments of 
any kind in topsoil; or (2) any proportion of rock outcrops, boulders or large boulders within 15 
cm of the surface; 

Final remarks and conclusions 

Soil texture is a major determinant of soil suitability for any land use, as evidenced in its influence on 
many land qualities. The fairly extreme textures selected for the thresholds ensure that areas so 
identified are indeed less favorable for conventional agriculture. 

It should be recognized that texture interacts strongly with water holding capacity (available water 
capacity of the soil) and climate, such that soil moisture deficits are often associated with textural 
limitations. Stony or coarse-textured soils in cool, cloudy climates with regular small rain showers 
may suffer moisture deficits; conversely, loamy soils in hot, cloudless conditions with widely-spaced 
and irregular rainfall may show strong water deficit. Additionally, effective rooting depth interacts 
directly with texture limitations to determine the available water capacity of the soil. A water-balance 
model incorporating actual rainfall and solar radiation, a crop calendar with growth-stage specific 
coefficients, and available water capacity of the soil provide an objective basis for the estimation of 
water deficits. 
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Different types of clay minerals, having similar particle size, have greatly different nutrient-holding 
capacity. Soil structure (aggregation of the fines) can have a large effect on effective pore-size 
distribution and hence water-holding capacity. Organic matter can supply nutrients and hold water. 
All of these affect the tilt of the soil. 

1 Organic soils are very fragile ecosystems and improper management can drastically affect them 
(mineralization of organic matter). Moreover, they act as organic carbon pools and play an important 
role in carbon sequestration; therefore they should be properly treated, preferably left in their natural 
condition. 
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Criterion 5 “Rooting Depth” 

Author:David Rossiter, ITC, Enschede, the Netherlands 

Contributor:Bob Jones, Cranfield University, United Kingdom 

Editor:Jos Van Orshoven (K.U.Leuven, Leuven, Belgium) and Jean-Michel Terres (JRC, 
Ispra, Italy) 

Agronomic importance 

Roots grow into the soil to provide a physical anchor for the plant, and to extract soil-bound water and 
nutrients. For annual grain crops and grasses, the anchoring function does not require great depth 
(except for tall varieties of maize); the first 10 cm or so provide enough stability. However, water is 
rapidly exhausted from shallow depths by the growing plant. Potential evapotranspiration rates of 1 to 
4 mm water per day, combined with a typical available water capacity of 150 mm water per vertical 
meter of soil profile, imply that water will soon be exhausted in shallow soils. 

Rooting depth is generally constrained by coherent hard rock or hardpans (dense soil layers). 

Physical limitations to rooting depth are also impediments to normal tillage, such that if plant roots 
cannot grow easily, it is unlikely that the plough can cut easily into the soil. Standard tillage depth is 
15 to 25 cm. 

Definition 

Rooting depth is the maximum depth from the soil surface to where most of the plant roots can extend 
during a growing season. In the FAO Guidelines for Land Evaluation (Rainfed agriculture) (FAO 
1983) it is referred to as LQ7 “Rooting conditions …. for the development of an effective root 
system”. In the current definition, we restrict ourselves to the soil characteristic “rooting depth”, 
defined both by the effective soil depth above any barrier to root extension, excluding impediments to 
root extension as such compact (massive) structure. 

Scientific background 

Provided there is no barrier to root extension, in the form of hard rock or a cemented (pan) layer, most 
crop plants roots extend to depths in the range 60cm to 1.2m, although in some cases rooting can be 
deeper, for example sugar beet 140cm (Hall et al., 1977; Jones et al., 2000). Some perennial plants, 
particularly in arid areas, can exploit the soil to much greater depths (5-10m), usually to extract water. 
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Figure 1 Distribution of roots in the soil compared with uptake of nutrients 

[after Russell, 1971] 
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With a physical rooting depth < 15 cm, normal tillage is impossible and even short 
dry periods will cause severe water stress. 

With a physical rooting depth < 30 cm, normal tillage to 15 cm is marginal. If the representative 
depth is 30 cm within a field, it almost certain that the depth of soil in parts of the field will be less 
than 30cm, thus creating conditions that would damage tillage implements. Water stress in such 
shallow soils is likely to occur in most environments with an actively-growing crop. For example, a 
30 cm deep soil with a typical available water capacity of 17% v/v can store a maximum of 51 mm 
water available to plant roots; this will be exhausted within 8 to 16 days under typical 
evapotranspirative demands (3 to 6 mm d-1) of grain crops in temperate climates (Olejnik et al. 
2001). However, stress will occur earlier as plants roots have to work harder and harder to extract 
water as the wilting point is approached. This is an important consideration because periods without 
rain during the growing season can be expected in much of Europe. 

Water deficit interacts with rooting depth and climate, mediated by available water capacity of the 
soil. Shallow soils in cool, cloudy climates with regular small rain showers may show little or no 
water deficit. Conversely, deep soils in hot, cloudless climates, with widely-spaced irregular rainfall, 
may suffer large water deficits. Furthermore, a shallow sandy soil holds less water than a silty or 
loamy soil of the same depth. A water-balance model, incorporating actual rainfall and solar 
radiation, a crop calendar with growth-stage specific coefficients, and available water capacity of the 
soil, can give objective water deficit data. However, since the decision has been taken to use simple 
soil parameters rather than using crop specific information, rooting depth is used as a surrogate. 

Assessment 

During routine field survey, rooting depth is typically assessed by augering. The observed depths are 
then interpolated with reference to the landscape structure to produce rooting depth estimates for land 
areas or map units. 

Values for severe and very severe threshold 

- Severe: Physical rooting depth: 15 - 30cm: 

- Very severe: Physical rooting depth: < 15 cm 

Final remarks and conclusions 

Shallow rooting depth is a serious constraint for conventional agriculture, adversely affecting crop 
growth (nutrient and water are limiting) and restricting tillage operations necessary to cultivate the 
soil. Therefore, shallow soils can certainly be considered ‘less favoured’ for conventional agriculture. 

It is beyond doubt that a rooting depth of < 15 cm is very severely limiting to crop growth. Even 
deeper soils can have severe or even very severe root development problems due to massive or platy 
structure, vertic properties, and chemical environment. So not all soils without this limitation as here 
evaluated have in fact satisfactory rooting conditions. 

References 

ESB Scientific Committee, 2001. Georeferenced soil database for Europe: Manual of Procedures 
(European Soil Bureau Resarch Report 5; EUR 18092 EN ). Ispra, Italy: European Soil Bureau. 



 

EN 51   EN 

FAO, 1983. Guidelines: land evaluation for rainfed agriculture. Soils Bulletin 52. Rome, Italy: Food 
and Agriculture Organization of the United Nations. 

Hall, D.G.M., Reeve, M.J., Thomasson, A.J., Wright, V.F., 1977. Water retention, porosity and 
density of field soils. Soil Survey Technical Monograph No. 9, Harpenden, UK, 75pp. 

Jones, R.J.A., Zdruli, P. and Montanarella, L. (2000). The estimation of drought risk in Europe from 
soil and climatic data. In: Drought and Drought Mitigation in Europe. J.V. Vogt and F. Somma (eds.): 
133-146. Kluwer Academic Publishers. the Netherlands. 

Olejnik J, Eulenstein F, Kedziora A, Werner A, 2001. Evaluation of a water balance model using data 
for bare soil and crop surfaces in Middle Europe. Agricultural and Forest Meteorology, 106(2), 105-
116. 

Russell, R.S. (1971). Root systems and nutrition. In: Potential Crop Production, P.E. Waring and J.P. 
Cooper (eds), p.101-116. Heinemann Educational Books, London. 



 

EN 52   EN 

Criterion 6.1 “Soil salinity” 

Author: Freddy Nachtergaele, FAO, Rome, Italy 

Contributor: Bob Jones, Cranfield University, United Kingdom 

Edited by: J Van Orshoven (K.U.Leuven, Belgium) and JM Terres (JRC, Ispra, Italy) 

Agronomic importance 

With regard to agriculture, the consequences of soil salinity include: 

- Significant losses of productivity, with some land entirely out of production. With 
increasing soil salinity, plants always find it more difficult to extract water from the 
altered soils. Most normal crop and pasture plants are not highly salt-tolerant and will 
eventually die out under saline conditions; 

- Damaged soil structure and increasing content of toxic substances that may be limiting 
to plant growth; 

- More serious soil erosion, both by wind and by water, due to worsening soil structure 
and reducing vegetation cover. 

Definition 

Salinity is the presence of soluble salt in the land surface, in soil or rocks, or dissolved in 
water in rivers or groundwater. Salinity can develop naturally, but where human intervention 
has disturbed natural ecosystems, the movement of salt into rivers and onto land has been 
accelerated. Soil salinity refers to the total amount of soluble salt in soil. 

In the context of less favourable areas for agriculture in Europe, soil salinity is a characteristic 
of land for which the total amount of soluble salt in soil is too high for plants to perform or 
survive. 

Scientific background 

Soil salinity may impact on agriculture, water quality, public infrastructure and urban 
households and on biodiversity and the environment. 

Dryland salinity occurs where there is removal or loss of native vegetation, and its 
replacement with crops and pastures that have shallower roots. This results in more water 
reaching the groundwater system. The groundwater rises to near the surface in low-lying 
areas. It carries dissolved salts from the soil and bedrock material through which it travels. As 
saline groundwater comes close to the soil surface (within 2m), salt enters the plant root zone. 
Even where the groundwater does not bring much salt with it, the waterlogging of the plant 
root zone alone can damage or kill vegetation. 
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As soil salinity levels increase, plants extract water less easily from soil, aggravating water 
stress conditions. High soil salinity can also cause nutrient imbalances, result in the 
accumulation of elements toxic to plants, and reduce water infiltration if the level of one salt 
element -sodium- is high. 

There is a large amount of literature on crop responses to salinity levels and extensive 
research has been undertaken, particularly in dryland countries (USA and Australia). A 
selected list of references is given below. 

Assessment 

Soil salinity is determined by measuring the electrical conductivity of a solution extracted 
from a water-saturated soil paste. Salinity is abbreviated as ECe (Electrical Conductivity of 
the extract) with units of deci-siemens per meter (dS/m). 

Values for severe and very severe threshold 

Salinity tolerance is influenced by many plant, soil, and environmental factors and their 
interrelationships. Generally, fruits, vegetables, and ornamentals are more salt sensitive than 
forage or field crops. In addition, certain varieties, cultivars, or root stalks may tolerate 
higher salt levels than others. Plants are more sensitive to high salinity during seedling 
stages, immediately after transplanting, and when subject to other (e.g., disease, insect, 
nutrient) stresses. A general response list is given in Table 1. 

Table 1. General guidelines for plant response to soil salinity. 

Salinity (ECe, dS/m) Plant response 

0 to 2 
2 to 4 
4 to 8 
8 to 16 

above 16 

mostly negligible 
growth of sensitive plants may be restricted 
growth of many plants is restricted 
only tolerant plants grow satisfactorily 
only a few, very tolerant plants grow satisfactorily 

 

Although crop response to soil salinity is crop specific, overall there are good arguments to 
accept that: 

- Levels over 4dS/m severely affect many plants while 
- Levels over 16dS/m very severely affect many plants so that land characterized by such 

salinity levels are excluded for most agricultural uses. 

Final remarks and conclusions 

Although excessive soil salinity in the EU is constrained to zones in Hungary, Romania and 
Spain, its effects are very real. 
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Agronomic importance 

Soil sodicity has two main effects on soils and indirectly on its agricultural capacity to produce. Note 
that sodicity effects are often indirect as they affect vital soil properties rather than crop growth itself. 

1. Sodic soils are prone to waterlogging. Sodicity at the soil surface results in soil crusting and 
decreased hydraulic conductivity and available rooting depth. Consequently soils become prone to 
water logging. If sodicity occurs below the root zones of plants, its effect on crop productivity may 
be less apparent, but it can still cause significant problems. For example, in a high rainfall area on 
sloping land, subsurface water will flow over the sodic layer and be lost in lateral drainage. On 
flatter land, the sodic layer may not permit water to drain, leading to waterlogging at the surface. 

2. Sodic soils erode easily. Sodic topsoils in dry regions are subject to dust storms. Sodic soils on 
sloping land are also subject to water erosion, which means that important fertile topsoil is lost 
from agricultural land. When water flows in channels or rivulets, soil is washed away along these 
lines forming furrows called rills. In some cases, even larger channels of soil removal, called 
gullies, develop. In other situations where only the subsoil is sodic on sloping land, subsurface 
water flowing over this sodic layer will create tunnels, leaving cavities that eventually collapse to 
form gullies. 

3. General effects. In Australia sodicity is estimated to costs agriculture as much as $2 billion each 
year in lost production. And its impacts extend to water catchments, infrastructure facilities and the 
environment. Run-off from sodic soils carries clay particles into waterways and reservoirs causing 
water turbidity, or cloudiness. The effects of turbidity, and its removal, are very costly for 
industrial and domestic water users. Turbidity also causes environmental problems in rivers and 
wetlands. In addition, run-off from sodic soils is more likely to carry higher levels of nitrogen and 
phosphate into waterways and reservoirs. These are the nutrients that contribute to algal blooms, 
another significant environmental problem. 

Definition 

Sodicity refers to the presence of a high proportion of adsorbed sodium in the clay fraction of soils. 
Sodic soils are normally characterized by a dense, strongly structured, clay illuviation horizon that has 
a high proportion of adsorbed sodium ions. 

In the context of less favorable areas for agriculture in Europe, soil sodicity is a characteristic of land 
for which the proportion of adsorbed sodium in the soil clay fraction is too high for plants to perform 
or survive. 

Scientific background 

In sodic soils, much of the chlorine has been washed away, leaving behind sodium ions (sodium atoms 
with a positive charge) attached to tiny clay particles in the soil. As a result, these clay particles lose 
their tendency to stick together when wet – leading to unstable soils which may erode or become 
impermeable to both water and roots. 

 

Criterion 6.2 “Soil Sodicity”
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Assessment 

Soil sodicity is determined by measuring the exchangeable sodium proportion of the cation exchange 
capacity (ESP – Exchangeable Sodium Percentage) or by comparing the soluble sodium proportion 
with the sum of soluble Calcium and Magnesium in a soil solution (SAR – Sodium Adsorption Ratio). 
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Values for severe and very severe threshold 

Sodicity tolerance is influenced by many plant, soil, and environmental factors and their 
interrelationships. As the effect is often indirect it is difficult to suggest precise thresholds. The effect 
of exchangeable sodium percentage (ESP) on the yield, chemical composition, protein and oil content 
and uptake of nutrients by groundnut showed that ESP over 15 delayed germination and emergence of 
flowers. There was continuous decrease in dry matter yield at 30 and 60 days of growth, grain and 
straw yield after harvest and protein, oil and kernel percent with increase in soil ESP. A 50% reduction 
in groundnut yield was observed at an ESP of 20. The uptake of all the nutrients decreased with 
increase in soil ESP. On the other hand cotton experiments showed relatively little effect of sodicity, 
until levels over ESP 25 are reached. 

Whilst an ESP of six was proposed by Northcote and Skene (1972) to be the lower limit of soil 
sodicity, values of five (van Beekom et al., 1953) and two (Mitchell, 1976) have been suggested to 
cause a deleterious effect on soil structure. Spontaneous clay dispersion occurred in Ca-Na aggregates 
at an ESP of five, but was observed in Mg-Na samples when the ESP was only 3 (Emerson and 
Bakker, 1973). 

Given the interactions with other factors there are few scientific studies that isolate ESP as a single 
causal factor for yield decline (see above for some specific ones). However, overall soils with sodic 
problems, in particular when ESP levels over 15 are reached have generally characteristics such that 
they should be avoided for any intensive agricultural practices. 

Therefore: 

- Severe soil sodicity is set to an ESP > 6 but <=15 while 

- Very severe soil sodicity is set to ESP > 15 

Final remarks and conclusions 

Although severe and very severe soil sodicity in the EU is constrained to zones in Hungary, Romania 
and Spain, its effects are very real. 
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Agronomic importance 

Many factors affect plant growth in gypsiferous soils, including gypsum content within the root zone, 
depth to a gypsic layer, depth to impermeable layers, crop tolerance level and gypsum solubility. Also 
physical properties are often unfavorable, causing low water availability, slaking of loamy top soils, 
piping and collapse of irrigation canals. In soils with gypsum, almost all crops show deficiency of most 
plant nutrients, in particular phosphorus and micronutrients. 

Definition 

Gypsiferous soils are soils that contain sufficient quantities of gypsum (calcium sulfate dihydrate) to 
interfere with plant growth (FAO,1990). 

In the context of less favourable areas for agriculture in Europe, gypsum content is a characteristic of 
land for which the amount of gypsum in soil is too high for plants to perform or even survive. 

Scientific background 

Generally gypsum soils are located in dry climates and are relatively unproductive. They are 
considered marginal for crop production and are primarily used for livestock grazing, and wildlife 
habitat. The soils are droughty and infertile and support uniquely adapted plant communities. 

Gypsiferous soils are found in arid and semi-arid areas on gypsiferous rocks and sediments of different 
origin, where rainfall is insufficient to leach the gypsum out of the soil mantle. They usually occur in 
the same regions as calcareous soils but are much less widespread. 

Crops can be classified according to their sensitivity to gypsum: (1) tobacco is sensitive; (2) cotton, 
groundnut, potato and sunflower are semi-sensitive; (3) broad beans, sugar beet, sorghum, corn, 
soybean and sesame are semi-tolerant; (4) alfalfa, trifolium, wheat, barley, lentil, oat, tomato and 
onions are tolerant. When the gypsum content in the root zone is more than 40%, land is considered 
unsuitable for cropping. 

Van Alphen and de los Rios Romero (1971) conclude that up to 2 percent gypsum in the soil favours 
plant growth, between 2 and 25 percent has little or no adverse effect if in powdery form, but more 
than 25 percent can cause substantial reduction in yields. They suggest that reductions are due in part 
to imbalanced ion ratios, particularly K:Ca and Mg:Ca ratios. Hernando et al. (1963, 1965) studied the 
effect of gypsum on the growth of corn and wheat by varying the gypsum level in the soil up to 75 
percent. They show that high levels of gypsum caused poor growth of corn, especially as the soil 
moisture was maintained at 80 percent of field capacity. However, wheat showed minimum growth 
where the soil contained 25 percent gypsum at all soil moisture levels ranging from 15 to 100 percent 
of field capacity. Akhvlediani (1962) concludes in general, that agricultural production on gypsiferous 
soils is not affected when the gypsum content is between 15 and 30 percent. Bureau and Roederer 

Criterion 6.3 “Soil gypsum content”
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(1960), report that 30 percent gypsum content in soils of Tunisia is toxic to plant growth. Van Alphen 
and de los Rios Romero (1971) state, from field observations in the Ebro Valley of Spain, that plant 
growth is reduced where the gypsum content exceeds 20 to 25 percent. 

From intensive field observations of gypsiferous soils in Iraq, Smith and Robertson (1962) found that 
root growth was inhibited where the gypsum content of soil was over 10 percent. This is apparently 
because of the poor transmission of air and water caused by poor structure. They also found that soils 
containing more than 25 percent gypsum in the rooting zone give poor growth. In the spring, wheat 
crops wilt on shallow gypsiferous soils when other crops on deeper soils show no signs of distress. 
Roots do not penetrate the gypsum layer, even when it is quite wet. Kovda (1954) and other workers 
observe that plant roots do not penetrate a soil layer containing 25 percent of gypsum or more. 
Boyadgiev (1974) notes that the presence of well-crystallized gypsum within the first metre of soil, 
affects the performance of cotton crops significantly. Boyadgiev (1974) also noted that crops such as 
alfalfa could grow very well and give high yields even in soils containing up to 50 percent of powdery 
gypsum as long as no gypsic layer impeding root elongation and extension is present in the soil profile 
at shallow depth. Similar effects have been noted by Amami et al. (1967) in the oasis at Tozeur in 
Tunisia, where good yields of alfalfa and date palms were obtained in the highly gypsiferous soils. 
Similar results were obtained in the Ebro Valley of Spain with crops such as alfalfa, wheat and 
apricots. 

It appears from the above results that the gypsum content of soils is only one of several factors which 
affect plant growth and yield of crops. The other factors are: 

a) The depth of the topsoil over a gypsic layer; 
b) The hardness and degree of crystallization of the gypsic layer; 

c) The total and active calcium carbonate contents; 
d) The availability of plant nutrients and moisture content in the root zone; 

e) The type of crops grown and their relative tolerance to gypsum; 

f) The drainage conditions and salinity of the soil. 

Assessment 

Gypsum is determined by the differential water loss method which estimates the gypsum percentage 
from the loss of water in the soil sample between 70 and 90°C. It can also be estimated with gravimetric 
determinations of precipitated BaSO4. 

Values for severe and very severe threshold 

As can be seen from the above, there are many factors which make the use of a single threshold 
debatable. Overall results would indicate that apart from special crops (certain fruit trees), gysiferous 
soils 

- present a severe limitation to crop production once the gypsum percentage exceeds 15 % while 
- more than 40% of gypsum constitutes a very severe limitation for most crops. 

Final remarks and conclusions 
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Although severe and very severe limitation due to presence of gypsum in soils in the EU is constrained to 
zones in Spain, their effects are very real. 
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Criterion 7 “Soil Moisture Balance” 

Author: Guenther Fischer, Edmar Teixeira and Harrij van Velthuizen, IIASA, Laxenburg, 
Austria 

Contributor: Bob Jones, Cranfield University, Bedford, United Kingdom 

Edited by: Jos Van Orshoven (K.U.Leuven, Leuven, Belgium) and Jean-Michel Terres (JRC, 
Ispra, Italy) 

Agronomic importance 

The soil moisture balance is a critical parameter for assessing the potential for crop production. 
Agricultural production is seriously impaired if soil water is limiting during the growing season and the 
‘Soil Moisture Balance’ criterion identifies land at risk of this causing adverse affects on plant growth 
and crop yields. 

Most agricultural crops offer varieties which vary in their general and specific climatic requirements 
and in their length of total growing period from sowing to harvest. This variation allows a crop to be 
adapted to a wide range of climatic conditions and to the time period required and available for crop 
production. One of the important crop requirements, the available growing period is determined by the 
amount and duration of water supply. 
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It is assumed that in areas with irrigation water resources and irrigation infrastructure in place no water 
stress occurs and that the number of days available for crop growth is generously sufficient. Irrigated 
areas are considered as favourable areas for agricultural production (from perspective of soil moisture 
balance criteria) and therefore only rainfed agriculture is considered here. 

Definition 

Deficitary soil moisture balance is defined as the condition in which crop performance or survival is 
compromised by limited water availability during the growing period, which is insufficient for optimal 
growth and development of crops. 

In the context of less favorable areas for agriculture in Europe, deficitary soil moisture balance is a 
characteristic of land for which the “number of days, within growing period as defined by temperature, 
for which the amount of precipitation and moisture available in the soil profile is not sufficiently high as 
compared to the reference evapotranspiration, for plants to complete the production cycle”. 

Scientific background 

In most parts of Europe rain-fed agricultural production is possible during a part of the year only. The 
growing period available for rain-fed crop cultivation is defined by the period with favorable 
temperatures and soil moisture conditions. Crop growth cycles vary between 60 days (e.g. buckwheat) 
and all year round (e.g. banana). Most European annual agricultural crops have growth cycles between 
90 and 210 days. 

The start of the growing period is defined by temperatures exceeding 5oC and accumulation of sufficient 
rainfall to moisten the topsoil to sustain growth of germinating crops. The moisture required at this early 
crop development stage is well below the evapo-transpiration demand of crops at maximum canopy 
cover. For establishing crops, 0.4-0.5 times the level of reference evapotranspiration is considered 
sufficient to meet crop water requirements. (FAO 1978-81, Doorenbos and Kassam 1979, FAO 1992, 
FAO 1998). Therefore the minimum available moisture to define the start of the rain-fed growing period 
has been set to half of reference evapotranspiration. 

The growing period for most crops may continue beyond the rains. Crops may mature on moisture 
stored in the soil profile. However, the amount of moisture stored in the soil profile and available to a 
crop varies, e.g., with depth of the soil profile, the soil’s physical characteristics and the rooting pattern 
of the crop. Depletion of soil moisture reserves causes the actual evapotranspiration to fall short of the 
crop requirements. 

Assessment 

This number of days available for rain-fed agricultural production in individual locations can be 
estimated using the FAO/IIASA concept of Length of Growing Period (LGP)1, which is defined as: “the 
period during the year when both moisture availability and temperature are conducive to crop growth” 
(FAO 1978, Fischer et al., 2002, 2006, 2008). The calculation of LGP is based on a simple moisture-
balance comparing rainfall and moisture stored in the soil profile available to agricultural crops, with 
crop water requirements in terms of reference crop evapotranspiration rates2. 

The climatic parameters required for calculating the ‘soil moisture balance’ are defined in Fischer et al. 
(2008) in LUC/0803. 
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The soil properties that are required for calculating plant available water in the soil profile, which 
Thomasson (1995) has defined as Soil Water Available to Plants (SWAP), are: 

- Volume of water retained at suctions of 5 kPa (notionally field capacity) and 1500 kPa (wilting 
point) – see Hall et al., (1977); Smith and Thomasson, (1982) 

- Soil (rooting) depth – depth in the soil to which plant roots can extend, largely unimpeded 
If soil water retention properties have not been measured (from undisturbed cores) for an area of 
interest, SWAP may be estimated in regional or national cases from pedotransfer functions relating 
water retention at field capacity and wilting point to contents of silt, clay, organic carbon and bulk 
density (Hall et al., 1977). At European scale, for which less accurate data might suffice, pedotransfer 
rules have been developed (van Ranst et al., 1995) and applied (King et al., 1995; Jones et al., 2000). 

Values for severe and very severe threshold 

Short growing periods either due to moisture deficits, cold temperature limitations or both provide 
unfavorable conditions for agriculture. On the basis of minimum crop cycle durations, the following 
critical limits have been established: 

- Severe threshold: LGP < 90 days but >= 60 days 
- Very severe threshold:     LGP < 60 days 
To account for inter-annual variability of moisture conditions the 80% percentile of exceedance of the 
proposed thresholds is suggested, i.e., a very severe soil moisture limitation would render an area 
unfavorable if the calculated rain-fed LGP would be less than 60 days in three or more years out of ten 
years. A severe limitation occurs if in only three or more years out of ten years the rain-fed LGP fall 
below 90 days and not more than 2 years fall below 60 days. 

1 In a formal sense LGP refers to the number of days with average daily temperatures above 5 oC 
when moisture conditions are considered adequate, i.e., available soil moisture results in actual 
evapotranspiration of at least half potential evapotranspiration. 
2 For the calculation of reference evapotranspiration, the Penman-Monteith equation (FAO 1992) 
is recommended 

Final remarks and conclusions 

The climatic suitability of land for rain-fed crops is governed to a large extent by the number of 
growing period days available in a location. As long as crop growth cycles fit within the available 
growing period as determined by temperature and soil moisture condition are favorable for crop growth. 
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Criterion 8 ”Slope” 

Compiled by: Freddy Nachtergaele, FAO, Rome, Italy 

Edited by:      Jos Van Orshoven, K.U.Leuven, Leuven, Belgium Jean-Michel Terres (JRC, 
Ispra, Italy) 

Agronomic importance 

Slope as such has little or no direct influence on the yield of crops. However the steeper the slope the 
more difficult it becomes to manage the land and to grow crops. In particular mechanisation is 
hampered while access to land and all agricultural operations become more time consuming. Steeper 
slopes are also associated with shallower soils in general (Leptosols, Regosols) and with a higher risk 
for soil degradation (erosion) and land slides. 

Definition 

Slope is the angle the soil surface makes with the horizontal. It can be expressed in degrees or as a 
percentage (45 degrees = 100 percent). The form of the slope may be important and influence the 
moisture status of the underlying soils, as happens in concave or convex slopes. A particular 
important characteristic for agriculture is the aspect (direction of exposure) of the slope that may 
result in significant higher temperatures on south-exposed slopes as compared to northern exposed 
ones, at least in the northern hemisphere. 

Scientific background 

Slope is frequently used as a criterion to assess capability and suitability of land for agriculture. In the 
British land capability classification, slope is recognized to have a marked effect on mechanical 
farming as follows in Table 1: 

Table 1: slope classes according to Bibby and Mackney, 1969. 

Slope 
(degrees) 

Slope 
(percent) 

Slope class Problems 

0-3 0-5,2 Gently sloping None 

3-7 5,2-12,3 Moderately 
sloping 

Difficulties with weeders, precision seeders and some mechanised 
root crop harvesters 

7-11 12,3-19,4 Strongly 
sloping 

Use of combine harvester restricted 

11-15 19,4-26,8 

 

Moderately 
steep 

Limit of use of combine harvester and of two way ploughing 
(depending of field configuration) 

15-25 26,8-46,6 

 

Steep Not suitable for arable crops, with slopes over 20° being difficult 
to plough, lime or fertilise 

>25 >46,6 Very steep Mass movement occurs, animal tracks across slope appear and 
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mechanisation impossible without specialised equipment 
 

Klingebiel and Montgomery (1966) distinguish four classes: 0-2%, 2-6%, 6-12% and >12%. For 
sugar beer and potatoe crops, Sys et al. (1991) distinguish between 5 classes (0-2%, 2-4%, 4-8%, 8-
16% and >16%) where the 5th one is considered to make land unsuitable for these crops. For wheat 
production, the classes are 0-2%, 2-8%, 8-12%, 12-16% and >16%. Again the >16% class is 
considered to be unsuitable. However, medium to low intensive pastures are the advisable land uses 
and still possible on these steeper slopes. 

Assessment 

Several instruments have been developed over time to determine the angle of the land. Topography has 
been estimated through photogrammetry techniques. Most national cartographic institutes have Digital 
Elevation Model (DEM) with a horizontal resolution of 10-20m. A particular recent development is 
the availability of radar and satellite obtained elevation measurements with a high resolution (90 
meters resolution is available for the whole world between 60 degrees North and South, and 30 meter 
resolution data are also used). For a given location, the estimation of the slope will be affected by the 
resolution of the DEM (coarse resolution DEM will under-estimate the real slope). 

From neighboring altitude data, slope can be determined by algorithms. The resulting ‘local’ slopes 
must be averaged over a larger area (typical field size) to be applicable as an indicator of land 
suitability. 

Values for severe and very severe threshold 

From the above can be stated that: 

- Slopes between 15 - 30% pose severe problems for mechanized cultivation, specific equipment is 
required; 

- The problems posed by slopes over 30% are very severe so that they cannot be used for 
mechanized agriculture, given the high risk for equipment reverse and soil erosion. 

Final remarks and conclusions 

Slope of land clearly affects its suitability for agricultural production; mainly through the restrictions 
steeper slopes impose on mechanization of crop management and on their vulnerability to soil erosion. 
Terracing is a way of overcoming the slope restrictions but is at the expense of huge investments and 
has in addition to cope with limitation due to soil depth. Furthermore, steep slopes will accelerated 
water erosion if not managed appropriately. 
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Abstract 

A panel of soil, climate and land evaluation experts reviewed a set of land evaluation methods in order 
to elaborate an approach which can support the definition and delineation of the so called 
“Intermediate Less Favoured Areas for agriculture (iLFA)” in EU27. The driver for this exercise is 
Article 50.3 of EC-Regulation 1698/2005 calling for the revision of the existing system on the basis of 
criteria related to low soil productivity and poor climate conditions for agriculture. 

FAO’s agricultural problem land approach was selected and adjusted to come forward with the 
requested approach. The FAO approach was deemed appropriate because it is not crop-specific and for 
its simple assumptions regarding the mutual interaction of land characteristics on the overall suitability 
of the land, making it applicable for a territory as large and diverse as EU27. Two climatic and four 
soil criteria were retained and complemented by one integrated soil-climate criterion (soil moisture 
balance), with slope as the sole topographic criterion. For each criterion two critical limits were 
defined dividing the criterion range into three sub-ranges: not limiting, severely limiting and very 
severely limiting for agriculture. 

The criteria and the associated critical limits or threshold values can be used anywhere to discriminate 
land with biophysical constraints to agricultural production on the basis that soil and climate data of 
sufficient spatial and semantic detail are available. Such datasets are held at regional and national 
levels, whereas the spatial and to a lesser extent semantic resolution of Pan-European soil and climate 
data sets is too restricted to classify land fully in line with terrain reality. 

The mission of the JRC is to provide customer-driven scientific and technical support for the conception, 
development, implementation and monitoring of EU policies. As a service of the European 
Commission, the JRC functions as a reference centre of science and technology for the Union. Close to 
the policy-making process, it serves the common interest of the Member States, while being 
independent of special interests, whether private or national. 
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ANNEX 12. DISTRIBUTION OF SHARE OF LFA PAYMENTS IN THE FNVA FOR NON-
MOUNTAIN LFAS  

 

Distribution of share of LFA payments in the FNVA for non-mountain LFA 
beneficiaries (%) 

 

 

 

 

 

 

 

 

 

 

Source: EU FADN, average data 2004-2005. German and Italian data on LFA are estimates. Cyprus data were missing at 
the time of drafting the analysis. The extreme values are not displayed.  

This graph illustrates the distribution of the share of LFA payments in FNVA (indicator of 
dependence to LFA scheme) for non-mountain beneficiaries by Member State. In each 
Member State, the non-mountain LFA beneficiaries are ranked according to the ascending 
share of LFA payments in FNVA (in %). The line in the box represents the median, which is 
the value separating the two halves of the non-mountain LFA beneficiaries, i.e. that 50% of 
the farmers have a share of LFA in FNVA inferior or equal to the median. The cross 
represents the average share of LFA payments in FNVA in the Member State. The box 
delimits the percentiles 25 (P25) and 75 (P75), the values separating respectively 25 and 75% 
of the non-mountain LFA beneficiaries. It means that 25% of the non-mountain LFA 
beneficiaries have a share of LFA in FNVA inferior or equal to P25 and respectively 75% 
below P75. The difference between the percentile 75 and the percentile 25 (illustrated by the 
box) is called the interquartile range and is an indicator of the distribution. The whiskers 
represent the percentiles 5 (P5) and 95 (P95). 5% of the non-mountain LFA beneficiaries have 
a share of LFA in FNVA inferior to P5. The extreme values (below P5 and above P95) are not 
displayed.  

For example, the graph illustrates that the degree of dependence to LFA scheme in the non-
mountain LFA is rather low and concentrated around the average in Belgium, Greece, Spain 
and Italy. It means that the average share of LFA in FNVA represents well the situation of the 
farms in these Member States, whereas the average hides a wide range of degree of 
dependence in other Member States, especially in Finland, Slovakia, Denmark and Czech 
Republic.  
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